THE NASA X-RAY MISSION CONCEPTS STUDY

Briefing to Astrophysics Subcommittee, July 30, 2012

Rob Petre (NASA / GSFC)

X-ray Mission Concepts Study Scientist

Community Science Team: Mark Bautz (MIT), Joel Bregman (Michigan; Chair), David Burrows (PSU), Webster Cash (Colorado), Christine Jones-Forman (SAO), Steve Murray (JHU), Paul Plucinsky (SAO), Brian Ramsey (MSFC), Ron Remillard (MIT), Colleen Wilson-Hodge (MSFC)

Science Support Team: Andy Ptak (GFSC), Jay Bookbinder (SAO), Mike Garcia (SAO), Randall Smith (SAO)

Engineering Support Team: Gerry Daelemans (GSFC), Tony Nicoletti (GSFC), Gabe Karpati (GSFC), Paul Reid (SAO), Mark Freeman (SAO), and others...

The road to the next strategic X-ray observatory

Background behind concepts study

- IXO was ranked 4th among large missions in decadal survey report New Worlds, New Horizons (NWNH)
- IXO study activities in US were terminated in fall 2011
 - Prior to termination:
 - Produced mirror development plan consistent with NWNH recommendation
 - Developed AXSIO concept (IXO redesigned to meet decadal constraints)
- In September 2011, NASA HQ initiated concept studies through PCOS Program Office to identify more cost effective ways to perform IXO and LISA science

NASA X-ray Concepts Study

Objectives

- Determine the range of science objectives of IXO that can be achieved at a variety of lower cost points
- Explore mission architectures and technical solutions that are fundamentally different from the heritage designs
- Fully engage the community and ensure that all voices are heard, all perspectives considered
- Create data for a report that describes options for science return at multiple cost points for X-ray astronomy

Deliver final report to NASA HQ that:

- Describes and analyzes trade space of science return vs. mission cost
- Summarizes the mission concepts developed during the study and how they relate to the trade space and other mission concepts that were not developed in a design lab
- Summarizes the RFI responses and the workshop and describes how they were folded into the whole study

Key questions addressed by IXO

What happens close to a black hole?

 Time resolved high resolution spectroscopy of the relativistically-broadened features in the X-ray spectra of stellar mass and supermassive black holes.

When and how did supermassive black holes grow?

 Measure the spin in SMBH; distribution of spins determines whether black holes grow primarily via accretion or mergers.

How does large scale structure evolve?

- Find and characterize the missing baryons by performing high resolution absorption line spectroscopy of the WHIM over many lines of sight using AGN as illumination sources.
- Measure the growth of cosmic structure and the evolution of the elements by measuring the mass and composition of clusters of galaxies at redshift < 2.

What is the connection between SMBH formation and the evolution of large scale structure (i.e., cosmic feedback)?

Measure the metallicity and velocity structure of hot gas in galaxies and clusters

How does matter behave at high density?

Measure the equation of state of neutron stars through (i) spectroscopy and (ii) timing.

Study Phases

July 30, 2012 APS -- X-ray Concepts Study 6

Study Boundary Conditions

- The basis for discussion and definition of concepts for further study was how well concepts addressed the breadth of exciting IXO science objectives, as endorsed by NWNH.
- We did NOT revisit decadal survey decisions regarding science questions or mission priorities.
- We studied representative missions for the various cost classes. The goal was to assess the fraction of IXO science that can be performed vs. mission cost.
- No recommendation for a specific mission or a preferred cost class was given in the final report. This is the responsibility of NASA and its advisory structure.

RFI responses

- 30 received: 14 mission concepts, 12 enabling technology
 - In the aggregate, the notional missions should probe various points of the science return vs. mission cost trade space.
 - Variety of concepts in nominal "cost bins" (<\$600M, \$600M-\$1B, > \$1B)
 - Degree of fulfillment of IXO science goals largely scaled with concept cost
 - Small missions skirted edges (typically one science goal)
 - Medium, large addressed one or more topics directly
- Technology responses addressed wide range of technology: optics, gratings, calorimeters and other detectors, structures
- All responses posted on PCOS website

Report bottom line

By developing technology first to minimize risk and reduce mission complexity (relative to IXO), a mission that captures most of the fundamental IXO science at a fraction of the IXO cost can be developed.

The notional missions that were studied cost less than the current X-ray flagship missions (*Chandra, XMM*) yet will greatly outperform them in critical ways, producing breakthrough science around which the *IXO* concept was developed.

Notional Missions

- Using RFI responses as guidance, the CST defined three single instrument notional missions, plus AXSIO as a dual instrument mission
 - N-XGS grating mission
 - N-CAL calorimeter mission
 - N-WFI wide field imaging survey mission
- Determined which notional missions would have highest science yield in anticipation of possible Cosmic Visions outcomes
 - Case I: ATHENA selected: N-XGS
 - Case II: ATHENA not selected: N-CAL
- Single instrument notional missions as an ensemble fulfill or make significant progress on all IXO science objectives

	Table 5.1-4: Pr	imary IXO/Decadal Science	e Objectives Addressed by	Notional Configurations	
Science Question	IXO Approach	AXSIO (\$1.5B)	Notional Cal (\$1.2B)	Notional Grating (\$0.8B)	Notional WFI (\$1.0B)
What happens close to a black hole where strong gravity dominates?	Measure the strong gravity metric via time resolved high resolution spectroscopy of stellar mass and ~30 SMBH at Fe-K and possibly Fe-L	Measure the strong gravity metric via time resolved high resolution spectroscopy of stellar mass and ~20 SMBH at Fe-K and possibly Fe-L [1]	Measure the strong GR metric via time resolved high resolution spectroscopy of stellar mass and ~ 10 SMBH at Fe-K	Measure the strong GR metric via time resolved high resolution spectroscopy of stellar mass and ~ a few SMBH at Fe-L (speculative) [2-3]	Measure the strong GR metric via time resolved low resolution spectroscopy of stellar mass and ~ 10 SMBH at Fe-K
When and how did SMBH grow?	Mergers and accretion impart differing amounts of spin to SMBH. Determine how SMBH grow via measuring the distribution of spin using >300 SMBH within z < 0.2 using orbit-averaged relativistic Fe-K lines	Measure how SMBH grow via determining the distribution of spin using ~60 nearby SMBH using orbit-averaged relativistic Fe-K lines	Measure how SMBH grow via determining the distribution of spin using ~40 nearby SMBH using orbit-averaged relativistic Fe-K lines	Measure how SMBH grow via constraining the distribution of spin using a few nearby SMBH using orbit-averaged relativistic Fe-L lines (speculative)	Measure when SMBH grow via determining the census of AGN out to 2~6; measure AGN power spectrum to infer the halo occupation density over a range in z
How does large scale structure evolve?	(i.) Find the missing baryons and determining their dynamical properties via absorption line spectroscopy of the WHIM over >30 lines of sight using AGN as illumination sources.	Find the missing baryons and determining their dynamical properties via grating absorption line spectroscopy of the WHIM over >30 lines of sight using AGN as illumination sources. [1]	Find the missing baryons via absorption line spectroscopy of the WHIM over <30 lines of sight using AGN as illumination sources (speculative).	Find the missing baryons and determining their dynamical properties via absorption line spectroscopy of the WHIM over > 30 lines of sight using AGN as illumination sources.	
	(ii.) Measure the evolution of the cluster mass function using ~500 clusters of galaxies at redshift 1-2	Measure the evolution of the cluster mass function using ~ 150 clusters of galaxies at redshift 1-2	Measure the evolution of the cluster mass function using 50-100 clusters of galaxies at redshift 1-2		Measure cluster mass function by detecting 5000 clusters, ~ 1000 at z>1 in surveys (TBD); detection of protoclusters at earliest stages of formation (z~2) [1]
Connection between SMBH and large scale structure ?	Determine the energetics of SMBH outflows via measurements of the velocity structure of hot plasma in ~300 galaxies and clusters; measure the metallicity distribution in galaxies and their halos	Determine the energetics of SMBH outflows via measurements of the velocity structure of hot plasma in ~70 galaxies and clusters; measure the metallicity distribution in galaxies and their halos [2]	Determine the energetics of SMBH outflows via measurements of the velocity structure of hot plasma in ~50 galaxies and clusters; measure the metallicity distribution in galaxies and their halos [2]	Determine the energetics of SMBH outflows in ~ 30 AGN winds via ionization time variability; probe hot galaxy halos via background AGN absorption lines	Measure metallicity distribution in ~ 100 clusters at z>1; measuring morphology of ~ 100 clusters at z> 1
How does matter behave at very high density?	Measure the equation of state (mass and radius) of neutron stars via spectroscopy of ~ 30 bright neutron star X-ray binaries.	Measure the equation of state (mass and radius) of neutron stars via spectroscopy of ~ 20 bright neutron star X-ray binaries	Measure the equation of state (mass and radius) of neutron stars via spectroscopy of ~ 20 bright neutron star X-ray binaries [1]	Measure the equation of state (mass and radius) of neutron stars via spectroscopy of rare transient slow-rotator neutron star X-ray binaries [2-3]	Measure the equation of state (mass and radius) of neutron stars via spectroscopy of a few bright neutron star X-ray binaries, using absorption lines in the burst rise and tails (speculative).
	Measure the equation of state (mass and radius) of neutron stars via timing of ~ 30 bright neutron star X-ray binaries.	Measure the equation of state (mass and radius) of neutron stars via timing of ~ 20 bright neutron star X-ray binaries [1]	Measure the equation of state (mass and radius) of neutron stars via timing of ~ 20 bright neutron star X-ray binaries [1]		Measure the equation of state (mass and radius) of neutron stars via timing of a few bright neutron star X-ray binaries during burst rises and tails. [3]

Legend:

- [1] Accomplishes IXO science goal fairly well
 [2] Accomplishes IXO science goal moderately well
- [3] Accomplishes IXO science goal marginally
 APS -- X-ray Concepts Study

Common assumptions and processes for costing

Assumptions:

- Three year lifetime
- L2 orbit
- All technology is at TRL 6
- All missions are Class B, with 85 percent probability of success at 3 years
- Mid decade start (2017); launch in early 2020's (exact timescale is mission dependent)
- Total cost is borne by NASA; covers phases A-F, including launch vehicle and GO grants

Processes:

- All concepts studied through GSFC's Mission Design Laboratory (MDL)
- Same costing methodology: PRICE-H for spacecraft and instruments (when possible); grassroots for science, operations; standard "wraps" for others
- 30 cost percent reserve applied to all hardware

Notional Calorimeter Mission (N-CAL)

- 1.8 m diameter segmented mirror with 9.5 m focal length and 10 arcsec resolution
- 5,000 cm² at 1 keV; 2,000 cm² at 6 keV
- 4 arcmin field of view calorimeter with central array for timing (same as AXSIO)
- Optical analog would be like going from a 4 m to a 10 m class telescope while replacing a CCD camera with an integral field unit
- Calorimeter instrument concept refined through dedicated GSFC IDL study
- Mission cost estimate: \$1.18B

Table 5.4-2. Details of the Calorimeter Array

Array	FOV	# of pixels	Pixel size	resolution	# of TESs	
Inner PSA	0.16 arcmin ²	256	1.5 x 1.5 arcsec	2 eV	256	
Outer #1	5.5 arcmin ²	544	6.0 x 6.0 arcsec	3 eV	544	
Outer #2	10.3 arcmin ²	1040	6.0 x 6.0 arcsec	6 eV	260	

Notional Gratings mission (N-XGS)

- $\lambda/\Delta\lambda$ > 3000 and area > 500 cm² across 0.2-1.2 keV band
- At the wavelength of the critical O VII lines (for example) this is 220 times better than the Chandra soft gratings and 80 times better than the XMM RGS
- Two independent spectrometers: 30° mirror arc + grating + CCD array
- Design is independent of grating choice (CAT vs. OPG)
- Mission cost estimate: \$780M

July 30, 2012

 Difference between goal and estimate due in part to use of generic design

Notional Wide Field Mission (N-WFI)

- N-WFI is the best of the notional missions for deep surveys
- Three identical telescopes, each with 1 m diameter, 6 m focal length full shell mirror plus CCD detector
- Angular resolution <7 arcsec across >24 arcmin field of of view
- Mission cost estimate: \$950M

July 30, 2012 APS -- X-ray Concepts Study 15

AXSIO

- AXSIO serves as the representative "large" mission
 - Designed to meet NWNH recommendations (<\$2B)
- Combines N-CAL and N-XGS but with a larger mirror (2x N-CAL)
- Incorporated refined calorimeter concept from N-CAL
- When re-evaluated under same guidelines as notional missions, cost estimate is \$1.5B
- Optics: 10 m focal length;
 0.9m² at 1.25 keV; 0.2m²
 at 6 keV: 10" resolution
 (5" goal)
- Calorimeter: 40X40 array with < 3 eV resolution (same as N-CAL)
- Grating: $\lambda/\Delta\lambda > 3000$; ~1000 cm² (0.3-1.0 keV)

Comments/Caveats about notional missions

- These mission concepts should be viewed as truly "notional," not as missions proposed for implementation
 - Concepts show that IXO objectives can be largely achieved at a cost of
 < \$2B, and a significant share for ≤ \$1B
- These are "point" designs, based on a ~1 week concurrent engineering effort
 - Design, and thus costs, have not been optimized
 - Considerable cost savings possible through optimization
- Assumed that full mission cost would be paid by NASA
 - Total cost to NASA could be reduced through strategic partnerships

Enabling Technology

- Study team used RFI responses on enabling technology to understand technology needs for notional missions and beyond
- Notional mission cost estimation assumed TRL 6; instruments and mirrors are currently at TRL 3-4
- Key instrumentation needs for each notional mission are identified, and a minimum cost for bringing to TRL 6 is provided
- In addition, report identifies long term technology needs for missions beyond current suite (e.g., high resolution optics and large format calorimeters)

Technology cost estimate

Table 6.7-1. Notional Mission Estimated Technology Development Costs

Technology	Current Performance	Goal	Applicable Missions	Cost per year (M\$)	# years	Total cost (M\$)	Ref
Calorimeters	16 pixels, TRL4	1840 pixels, TRL6	AXSIO, N-CAL	3.3	6	20	Kilbourne
Slumped glass optics	8.5", TRL4	10", TRL6	AXSIO, N-CAL, N-XGS	3	3	9	Zhang, CST
Wide field optics	17", TRL4	7", TRL6	N-WFI	4	4	16	CST
CAT gratings	TRL3	TRL6	AXSIO, N-XGS	2.7	3	8	CST/IXO Tech. Dev. Plan
OPG gratings	TRL3	TRL6	AXSIO, N-XGS	1	3	3	McEntaffer
X-ray CCDs for <i>N-WFI</i>	1k × 1k, TRL9	2k × 2k	N-WFI	1	2	2	CST
X-ray CCDs for <i>N-XGS</i>	0.3 Hz frame rate	15 Hz frame rate	N-WFI, AXSIO	1.5	2	3	CST
Total				15.5		57	

- Estimates are from RFI responses:
 - Assume single development, not parallel
 - Are highly optimistic
- Investment areas can be selected to match desired mission's needs
- Realistic estimate falls between total here and \$200M in NWNH

Next Steps

- A Technology Development Plan for the critical technology for the notional missions (mirrors, calorimeters, gratings, ...) will be developed over the next few months
 - Refine timescale, cost to bring needed technology to TRL 6
- A follow up study will be performed to maximize the science return for a \$1B class mission concept
- Goal is to provide input needed by NASA for its mid-decade implementation plan